Welcome to hugo's world

Comparative survey of potential nitrate and sulfate reduction rates in aquatic sediments

Publication year: 2011
Source: Geochimica et Cosmochimica Acta, Available online 28 October 2011
Anniet Laverman, Céline Pallud, Jeffrey Abell, Philippe Van Cappellen
Nitrate and sulfate are two major terminal electron acceptors of anaerobic respiration in nearshore sediments. Potential nitrate and sulfate reduction rates (NRR and SRR) were determined on surficial sediments sampled at 14 sites representing a wide range of shallow-water depositional environments. The rates were obtained by supplying undisturbed slices of sediments with nitrate, sulfate or both using a flow-through reactor technique. No external electron donor was added to the sediments. The results indicate that all studied sediments harbored viable and coexisting nitrate- and sulfate-reducing communities, which were able to instantaneously consume the electron acceptors supplied to the reactors. On average, NRR exceeded SRR by about one order of magnitude (309 ± 180 nmol NO3cmhversus 37 ± 29 nmol SO4cmh). The NRR:SRR molar ratio, however, varied significantly from site to site, with values ranging from 1.7 to 59. Nitrite production, indicative of incomplete nitrate reduction, was observed in all studied sediments and, on average, accounted for 45% of NRR (range 3–80%). Production of sulfate under nitrate-reducing conditions was observed in 10 out of 14 of the studied sediments, suggesting a common occurrence of sulfide oxidation coupled to nitrate reduction. Oxidation of sulfide accounted for 0 to 40% of NRR in the nitrate-only experiments. When both electron acceptors were supplied simultaneously, net sulfate consumption decreased on average by 45%. The effect of nitrate on SRR was highly variable, however, ranging from near complete inhibition to a 25% enhancement of SRR. Overall, the results of this study point to the need to critically reassess the model formulations used to represent anaerobic respiration processes and their interactions in early diagenetic models.

from ScienceDirect Publication: Geochimica et Cosmochimica Acta http://www.sciencedirect.com/science?_ob=GatewayURL&_origin=IRSSCONTENT&_method=citationSearch&_piikey=S001670371100620X&_version=1&md5=8ea2a40b2b6449690d6e3d7d7e60a424



Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  更改 )

Google+ photo

You are commenting using your Google+ account. Log Out /  更改 )

Twitter picture

You are commenting using your Twitter account. Log Out /  更改 )

Facebook photo

You are commenting using your Facebook account. Log Out /  更改 )


Connecting to %s